Life cycles shape parasite evolution: comparative population genetics of salmon trematodes.
نویسندگان
چکیده
Little is known about what controls effective sizes and migration rates among parasite populations. Such data are important given the medical, veterinary, and economic (e.g., fisheries) impacts of many parasites. The autogenic-allogenic hypothesis, which describes ecological patterns of parasite distribution, provided the foundation on which we studied the effects of life cycles on the distribution of genetic variation within and among parasite populations. The hypothesis states that parasites cycling only in freshwater hosts (autogenic life cycle) will be more limited in their dispersal ability among aquatic habitats than parasites cycling through freshwater and terrestrial hosts (allogenic life cycle). By extending this hypothesis to the level of intraspecific genetic variation, we examined the effects of host dispersal on parasite gene flow. Our a priori prediction was that for a given geographic range, autogenic parasites would have lower gene flow among subpopulations. We compared intraspecific mitochondrial DNA variation for three described species of trematodes that infect salmonid fishes. As predicted, autogenic species had much more highly structured populations and much lower gene flow among subpopulations than an allogenic species sampled from the same locations. In addition, a cryptic species was identified for one of the autogenic trematodes. These results show how variation in life cycles can shape parasite evolution by predisposing them to vastly different genetic structures. Thus, we propose that knowledge of parasite life cycles will help predict important evolutionary processes such as speciation, coevolution, and the spread of drug resistance.
منابع مشابه
The ups and downs of life: population expansion and bottlenecks of helminth parasites through their complex life cycle.
The fundamental assumption underpinning the evolution of numerous adaptations shown by parasites with complex life cycles is that huge losses are incurred by infective stages during certain transmission steps. However, the magnitude of transmission losses or changes in the standing crop of parasites passing from upstream (source) to downstream (target) hosts have never been quantified in nature...
متن کاملPopulation genetics of complex life-cycle parasites: an illustration with trematodes.
Accurate inferences on population genetics data require a sound underlying theoretical null model. Organisms alternating sexual and asexual reproduction during their life-cycle have been largely neglected in theoretical population genetic models, thus limiting the biological interpretation of population genetics parameters measured in natural populations. In this article, we derive the expectat...
متن کاملInformation about transmission opportunities triggers a life-history switch in a parasite.
Many microbial pathogens can switch to new hosts or adopt alternative transmission routes as environmental conditions change, displaying unexpected flexibility in their infection pathways and often causing emerging diseases. In contrast, parasitic worms that must develop through a fixed series of host species appear less likely to show phenotypic plasticity in their transmission pathways. Here,...
متن کاملEffects of interspecific competition on asexual proliferation and clonal genetic diversity in larval trematode infections of snails.
Interactions among different parasite species within hosts can be important factors shaping the evolution of parasite and host populations. Within snail hosts, antagonistic interactions among trematode species, such as competition and predation, can influence parasite abundance and diversity. In the present study we examined the strength of antagonistic interactions between 2 marine trematodes ...
متن کاملLife history constraints on the evolution of abbreviated life cycles in parasitic trematodes.
Abbreviations of the complex life cycle of trematodes, from three to two hosts, have occurred repeatedly and independently among trematode lineages. This is usually facultative and achieved via progenesis: following encystment in the second intermediate host, the metacercaria develops precociously into an egg-producing adult, bypassing the need to reach a definitive host. Given that it provides...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 58 1 شماره
صفحات -
تاریخ انتشار 2004